Stochastic Calculus for Fractional Brownian Motion I. Theory
نویسندگان
چکیده
This paper describes some of the results in [5] for a stochastic calculus for a fractional Brownian motion with the Hurst parameter in the interval (1/2, 1). Two stochastic integrals are defined with explicit expressions for their first two moments. Multiple and iterated integrals of a fractional Browinian motion are defined and various properties of these integrals are given. A square integrable functional on a probability space of a fractional Brownian motion is expressed as an infinite series of multiple integrals.
منابع مشابه
On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
Computational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملStochastic Integration for Tempered Fractional Brownian Motion.
Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.
متن کاملParameter estimation for stochastic equations with additive fractional Brownian sheet
We study the maximum likelihood estimator for stochastic equations with additive fractional Brownian sheet. We use the Girsanov transform for the twoparameter fractional Brownian motion, as well as the Malliavin calculus and Gaussian regularity theory. Mathematics Subject Classification (2000): 60G15, G0H07, 60G35, 62M40
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 38 شماره
صفحات -
تاریخ انتشار 2000